

Kiril Matev
Technical Evangelist
kmatev@infragistics.com

WPF Performance Tuning

XAML Applications Performance

We need fast applications
for the demanding desktop
scenarios

• Use shared resource definitions on the

Window/Application level

• Use static resources rather than dynamic ones

• Set Opacity on Brushes rather than Elements to

prevent the generation of a temporary surface for the

element

Application Resources

• Reduce the number of visuals (more to follow)

• Use virtualized containers with element recycling

• Refrain from using BitmapEffects

• Set the neutral culture using

NeutralResourcesLanguageAttribute to prevent lookup

of satellite assemblies

Layouts & Templates

• Fix binding errors to prevent expensive binding path

resolutions

• Bind to IList rather than IEnumerable, because the CLR

generates an IList to wrap it

• For adding/removing data from data sources, bind to

ObservableCollection<T> rather than IList

Data Binding

• Use Convertors instead of DataTemplateSelectors

• For virtualized control, the convertors will be invoked

for each cell coming into view

• Apply processing in code-behind and bind to

transformed/formatted data

Convertor vs DataTemplateSelector

• For virtualized item controls, the conversion logic will

be invoked for each cell coming into view

• Avoid unbound columns and convertors - apply

processing in code-behind and bind to transformed

data

Convertor Limitations

So…XamDataGrid is the most
sophisticated control we use. How

do we speed it up?

The smaller the number of UI
elements visible, the better

performance

• XamDataGrid uses editors for editing and formatting:

• Currencies – 12 elements

• Numbers – 12 elements

• DateTime – 20 elements

Default Templates

Use lean templates for read-only
columns

• XamDataGrid uses editors for editing and formatting:

• Currencies – 3 elements

• Numbers – 3 elements

• DateTime – 3 elements

Read-only Templates

• Download the read-only templates here:

 http://bit.ly/16eW3K7

• Set the AllowCellVirtualization and

ForceCellVirtualization properties to true (on each

field where the read-only templates are applied

Using Read-only Templates

• If you’re using your own CellValuePresenter with no

editor inside, XDG instantiates the cells in the column

when not visible horizontally

• AllowCellVirtualization and ForceCellVirtualization

(true) tell the grid that these cells won’t impact row

height and can be virtualized

ForceCellVirtualization property

• XamDataGrid uses editors for editing and formatting:

• Currencies – 3 elements

• Numbers – 3 elements

• DateTime – 3 elements

Demo – Optimized Templates

Process data as far as possible
from the UI

• Default XamDataGrid does filtering, sorting, grouping

on UI thread

• Requires loading of ALL records not currently visible

• Memory footprint

• Initial loading delay

Avoid the default UI Thread sorts

12.1 XamDataGrid added API to enable

sorting/grouping/filtering on the ListCollectionView and

manually

Enables you to create a middle tier of your application to

handle data processing

Avoid the default UI Thread sorts

• SortEvaluationMode

• GroupByEvaluationMode

• FilterEvaluationMode

• Auto

• UseCollectionView

• Manual (use RecordFilterChanging/ed)

New API Introduced in 12.1

• SummaryEvaluationMode

• Auto

• Manual

• UseLinq

New API Introduced in 12.1

• XamDataGrid uses editors for editing and formatting:

• Currencies – 3 elements

• Numbers – 3 elements

• DateTime – 3 elements

Demo – External Sorting

• In 12.1 we’ve added an optimization to substantially

improve on sorting real-time data

• Invoke the re-sort only when sorted field is changed,

instead of any field on record

Sorting real-time data

• XamDataGrid uses editors for editing and formatting:

• Currencies – 3 elements

• Numbers – 3 elements

• DateTime – 3 elements

Demo – Real-Time Sorting

Perform formatting away
from the UI

• Format data in the application layer and bind to

formatted values

• Converters are evaluated for each cell scrolled into

view on the UI layer, which should be avoided

Data Formatting

• Instead of Triggers, use a binding to a brush which is

evaluated in the view model to evaluate the conditions

and set brushes before data is bound to the view

Styling

Styling – an Example

Preload UI Controls to ensure fast
loading times

• Preload controls (IG XamDataGrid) in a window not

shown to user during initialization

• Causes the controls to be JIT-ted before they’re used

• Ensures fast first-time loading

Preloading

• Requires a change in application initialization logic

• Document well

Preload - Health and Safety Warning

• External operations demo - http://bit.ly/QNPmUF

• Simplified templates demo - http://bit.ly/LIo6Wh

• Sorting update demo - http://bit.ly/SPxk6s

• Preloading demo - http://bit.ly/14sjLEm

References & Materials

• Only requires a change in initialization logic

• Open a window containing used controls, close it

• Document this optimization well

XAML Performance – Q & A

kmatev@infragistics.com

