[bookmark: _Toc462569805][image: netfxlogo]	

Hands-On Lab
[bookmark: _Toc440251926][bookmark: _Toc230162250][bookmark: _Toc230162755][bookmark: _Toc230188063][bookmark: _Toc234175633]Lab Manual
[bookmark: _Toc230162251][bookmark: _Toc230162756]Lab03 – Using ADO.NET Data Services

[image: Infragistics]

Information in this document, including URL and other Internet Web site references, is subject to change without notice. This document supports a preliminary release of software that may be changed substantially prior to final commercial release, and is the proprietary information of Microsoft Corporation.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

The entire risk of the use or the results from the use of this document remains with the user. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Visual C# and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

	20

[bookmark: _Toc536017581][bookmark: _Toc11402521]Contents

Table of Contents
Lab Manual	1
Lab 03: Using ADO.NET Data Services	1
Lab Objective	4
Getting Started (15 minutes)	5
Exercise 1 – Create Entity Model (15 minutes)	6
Exercise 2 – Enabling the Data Client (10 minutes)	13
Exercise 3 – Updating the ViewModel in the User Interface (10 minutes)	14
Lab Summary	17

Page 17

[bookmark: _Toc106390644][bookmark: _Toc230149728][bookmark: _Toc230162252][bookmark: _Toc230162757][bookmark: _Toc230188064][bookmark: _Toc234175634]Lab 03: Using ADO.NET Data Services
In this lab, you will be introduced to the data access strategy used in the Aqua application – Entity Framework combined with ADO.NET Data Services. You will take a “vertical slice” of the Aqua application – a portion of each of the layers in the application - and you will add data access features.
By the end of this lab, you will understand:
· How to Add an Entity Model to an Application
· How to Interact with an Entity Model using ADO.NET Data Services
· The basic implementation of the MVVM Pattern
· Modify the main View-Model in the Aqua application to load data
· Interact with the user controls that make up the navigation in Aqua
This lab is the third in a series of three labs that will help you understand and learn the technologies used to create the Aqua Healthcare CRM application. The following labs are part of this series:
· Lab01 – Prototyping the CRM Application (posted to http://healthcare.codeplex.com)
· Lab02 – Understanding Windows Azure Services (posted to http://healthcare.codeplex.com)
· Lab03 – Implementing ADO.NET Data Services and MVVM (this lab)
By completing the lab, you will have a good understanding of how the MVVM and the data pattern works in Aqua.
The following diagram and table demonstrate the responsibility of concerns in the Aqua application:

	Class Type/Project in Aqua Solution
	Description

	View
(Aqua)
	Represents the UI in the application. Is responsible for rendering the contents of the model and delegates user requests to the view model.

	View Model
(Aqua)
	Controller type class that handles managing the state of the view, abstracting away the model, and handling user imputed.

	Model
(Aqua.Model)
	One or more classes that represent the domain of the application. Responsible for defining the data attributes and business rules (Behaviours) for the application. Designed to be independent of any data source.

	Command
(Aqua.DataClient)
	Processor type class that handles performing user and non-user driven actions in the application. Operations can be performed asynchronously or synchronously.

	Repository
(Aqua.DataClient)
	Data Access component responsible for accessing the data source(s) for the application and managing the persistence of the model.

	Mapper
(Aqua.DataClient)
	Data Access component responsible for mapping the model to and from the Data Transfer Objects(s) returned from applications data sauces.

The physical solution is laid out in Visual Studio as follows:
[image:]

When we set out to build Aqua, we looked to the MVVM pattern on the UI and ADO.NET Data Services as the data access choice for the following reasons:
1) MVVM as a UI pattern fits very well with WPF – there is a natural loose-coupling because of the binding model, and the data binding capabilities of WPF promote a clean separation of concerns between the component layers (UI, Business, & Data) of the application.

2) ADO.NET Data Services was a great for a couple of reasons:
a. It allows an asynchronous data access pattern which worked well with the UI design.
b. It supports a REST based data access model which is similar to SQL Data Services. Switching between ADO.NET Data Services and SQL Server Data Services should only require configuration changes. At the time of this lab, the latest iteration of SQL Server Data Services has not been released, so this cannot be tested.
If you read through Lab #2 – Working with Azure Blob Storage – you will remember the solutions architecture for data access. In the diagram below, note the Aqua.DataServices project – this is where the entity model and ADO.NET Data Services live. If the data access endpoint is swapped out, via configuration, there should technically be no coding changes.

[image:]
To learn more about this architecture and the goals of this reference application, and to download the complete source code of the Aqua application, please visit this site:
http://healthcare.codeplex.com
Estimated time to complete this lab: 60 minutes
The project files for this lab are in the \source\starter folder.
[bookmark: _Toc106390645][bookmark: _Toc230149729][bookmark: _Toc230162253][bookmark: _Toc230162758][bookmark: _Toc230188065][bookmark: _Toc234175635]Lab Objective
The objective of this lab is to understand how Entity Framework, ADO.NET Data Services, MVVM and WPF are used to handle the data bindings in the Aqua Healthcare CRM reference application. The following image represents what your output will look like when you complete this lab – you will have 2 user controls bound to data and interacting with each other – the Patients and Orders user controls.
[image:]
[bookmark: _Toc230149730][bookmark: _Toc230162254][bookmark: _Toc230162759][bookmark: _Toc230188066][bookmark: _Toc234175636]Getting Started (15 minutes)
In order to complete this lab successfully, you will need to install several technologies.
Here are the four links to download the installation packages, once you have downloaded and installed, you can complete the lab.

1. SQL Server Express 2005
http://www.microsoft.com/downloads/details.aspx?familyid=220549b5-0b07-4448-8848-dcc397514b41&displaylang=en

2. SQL Server Express 2005 Management Studio
http://www.microsoft.com/downloads/details.aspx?familyid=C243A5AE-4BD1-4E3D-94B8-5A0F62BF7796&displaylang=en

3. Windows Azure SDK (May 2009 CTP)
http://www.microsoft.com/downloads/details.aspx?FamilyID=22703881-1197-49e5-8231-f49095cfd0bb&displaylang=en

4. Windows Azure Tools for Microsoft Visual Studio May 2009 CTP
http://www.microsoft.com/downloads/details.aspx?FamilyID=11b451c4-7a7b-4537-a769-e1d157bad8c6&displaylang=en

5. WPF Toolkit
http://wpf.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=25047

6. Infragistics NetAdvantage for Win Client 2009 Vol. 1
http://www.infragistics.com/downloads/default.aspx
[bookmark: _Toc536017583][bookmark: _Toc11402523][bookmark: _Toc106390646][bookmark: _Toc230149731][bookmark: _Toc230162255][bookmark: _Toc230162760][bookmark: _Toc230188067]
Once these items are installed, you can complete this lab and any other lab in this series.
[bookmark: _Toc234175637]Exercise 1 – Create Entity Model (15 minutes)
In this exercise, you will open the Starter project, and add the code that will enable data access for this application.
[bookmark: _Toc106390647][bookmark: _Toc230149732][bookmark: _Toc230162256][bookmark: _Toc230162761]Task 1 – Configure Entity Framework and ADO.NET Data Service
1. Open the AquaVerticalSlice solution from the Labs\Lab03\Source\Starter folder.
2. Hit the F5 key to run the application. You should not see any errors reported, and the main UI of the application should appear.
a. Note the two user controls in white – ED Patients List and Orders. These will be the user controls that you enable with live data in this lab.
[image:]
3. Close the application to return to Visual Studio.
4. Expand the Aqua.DataServices project and click on the Data folder as show here:
[image:]
5. Right-click on the Data Folder, and select Add -> New Item from the context menu.
6. In the Add New Item dialog, select ADO.NET Entity Data Model.
[image:]
7. Leave the name as Model1.edmx, and click the Add button.

8. At this point, you are brought into the Entity Data Model Wizard, which guides you through several steps to configure your entity model.

9. Select Generate from Database and click Next.
[image:]
10. On the Choose Your Data Connection step, click the New Connection button.
[image:]
11. On the Connection Properties dialog, change the Server Name to .\SqlExpress (or the name of your SQL Server) and change the database name to the following path:
C:\%Lab Folder%\LABS\LAB03\COMPLETED\AQUA.DATASERVICES\APP_DATA\MEDICALDATA.MDF

[image:]
12. Click the OK button to close this dialog.
You should now be back at the Choose Your Data Connection step in the wizard.
13. Change the default configuration name for the Web.Config to MedicalDataEntities as shown in the next figure:
[image:]
14. Click the Next button.
15. On the Choose Your Database Objects step, Change the Model Namespace to MedicalDataModel.
16. Click the Finish button.
You should now be looking at the entity model for your database. If you select the entities in the designer, you will notice the mappings of the physical columns in the database to the entities in the model – such as the nvarchar data type of FirstName in the Staff object to the string FirstName property in the Model.
[image:]

You have now mapped the entity model to the database. The next step is to wire it up using ADO.NET Data Services so data can be retrieved and the model can be hydrated for the UI bindings.
Task 2 – Configure the Data Service
1. In the Aqua.DataServices project, right-click on the Services folder and select Add -> New Item from the context menu.
2. Select ADO.NET Data Service from the list of templates and change the name to MedicalDataService.
[image:]
3. Click the Add button to return to Visual Studio - you should be looking at MedicalDataService class file in the code editor.
4. Add the following using statement to the MedicalDataService class file.
using Infragistics.Guidance.Aqua.DataServices.Data;

5. Update the MedicalDataService class to reflect the following:
namespace Infragistics.Guidance.Aqua.DataServices.Services
{
 [System.ServiceModel.ServiceBehavior(IncludeExceptionDetailInFaults = true)]
 public class MedicalDataService : DataService<MedicalDataEntities>
 {
 public static void InitializeService(IDataServiceConfiguration config)
 {
			config.UseVerboseErrors = true;
			config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);
 }
 }
}

This class is the entry point of the application to the entity model. The Aqua.DataClient project has a Service Reference to this Data Service, which is how the Model classes are hydrated with data.
6. Open the Web.Config file, and locate the MedicalDataEntities connection string and make sure it reflects the following:
<add name="MedicalDataEntities" connectionString="metadata=res://*/Data.Model1.csdl|res://*/Data.Model1.ssdl|res://*/Data.Model1.msl;provider=System.Data.SqlClient;provider connection string="Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\MedicalData.mdf;Integrated Security=True;User Instance=False;MultipleActiveResultSets=True"" providerName="System.Data.EntityClient" />
Note you can change the “.\SqlExpress” to “ComputerName\SqlExpress” or any variation of connection string that you know will work with your current configuration.
7. Right click on the MedicalDataService.svc and select View in Browser from the context menu. You should see the model classes from the entity model.
[image:]

8. Change the URL in the browser to:
http://localhost:54329/Services/MedicalDataService.svc/Patient
You should see a formatted list of empty items in the browsers default RSS display. These items represent the Patient classes that have not been hydrated with data yet. The next step is to hydrate these Model classes with data so they can be used in the user interface.
[bookmark: _Toc230149734][bookmark: _Toc230162258][bookmark: _Toc230162763][bookmark: _Toc230188068][bookmark: _Toc234175638]Exercise 2 – Enabling the Data Client (10 minutes)
In this exercise, you will complete several tasks hydrate the model classes with data from the data service you created in the previous exercise.
[bookmark: _Toc105755083][bookmark: _Toc107039669] Task 1 – Updating the Service Reference
1. Expand the Aqua.DataClient project and expand the Service References folder.
2. Right-click on ServiceReference1 and select Update Service Reference from the context menu.
This process will refresh the proxy classes that map the model classes to the entity model you just created in the Aqua.DataServices project. The reason this “stub” was included in the lab is that project would not compile with a reference to the entity model. If you are creating a data client for the first time, and you need to add a reference to a data service, you would accomplish this by simply adding a new Service Reference to your client application and pointing the Service Reference to the appropriate URI. If you need to re-add the Service Reference to the Aqua.DataClient, you would right-click on the Service References folder, click Add Service Reference, click the Discover button and you would see the MedicalDataEntities namespace in the MedicalDataService data service as the following image demonstrates.
[image:]
Task 2 – Hydrate the Model Classes
Now that the Aqua.DataClient project is aware of its data source, you need to hydrate the model objects so data can get passed to the UI. This is done in the Mapper classes under the Data folder in the Aqua.DataClient project. In Aqua.DataClient, there are three sets of classes that work hand in hand to execute the data query (the command classes), read data from the data service (repository classes) and hydrate the objects in the model (mapper classes). The Repository classes define the LINQ query on the entity model, while the Mapper classes iterate the results of the query and loads, or hydrates, that data into the model. This can be visualized like this:

In the Aqua application, the main object that contains much of the data is the Admittance class. If you open the AdmittanceMapper class, you will notice it not only hydrates the Admittance object in the Model, but also the Patient, Staff and Complaint objects as well.
In this task, you will update several of the mapper classes so the correctly hydrate the model based on the request from the Repository.
1. Open the AdmittanceMapper class.
2. Update the MapCollection function to return a new instance of the AdmittanceCollection.
return new AdmittanceCollection((from d in source
 select this.Map(d)).ToList());

3. Open the PatientMapper class.
4. Update the MapCollection function to return a hydrated patient object instead of null in the Map function.
 return patient;

5. Open the OrderMapper class
6. Update the MapCollection function to return a new instance of the MedicationOrdersCollection.
return new MedicationOrdersCollection((from d in source
 select this.Map(d)).ToList());

7. Hit CTRL+SHIFT+B to build the project. You should not see any errors. The next step is to work in the user interface ViewModels to bind this data to the controls.
[bookmark: _Toc234175639]Exercise 3 – Updating the ViewModel in the User Interface (10 minutes)
In this exercise, you will complete several tasks hydrate the model classes with data from the data service you created in the previous exercise.
 Task 1 – Reviewing the User Controls
1. In the Aqua project, expand the View folder to note the three user controls – EDPatientsListView, OrdersView and PhysicianBannerView. These are the UI elements that are rendered in the MainWindow.xaml shell inside the WorkspaceItemsControl.
2. Open the MainWindow.xaml file in the XAML editor.
3. Scroll until you find the following XAML snippet:
<igTilePanel:WorkspaceItem
	Width="150"
	Height="300"
	Canvas.Left="0"
	Canvas.Top="0"
	DataContext="{Binding EDPatientsList}"
	State="{Binding Path=WorkSpaceItemState, UpdateSourceTrigger=PropertyChanged, Mode=TwoWay}"
	Title="ED Patient List">

Note the DataContext property is bound to the EDPatientList ViewModel. Each WorkspaceItem that renders a piece of the UI gets its DataContext from the ViewModel. In the code-behind for this file, the only code executing is creating a new instance of the MainWindowViewModel, and setting the data context of this base class to its instance. If you follow this code path to the MainWindowViewModel class, you will note the GetPatientData function, which executes the Command that you learned about in the Aqua.DataClient project. It is this MainViewModel class that executes the commands and returns the ViewModels to the MainWindow to render.
4. Open the MainWindowViewModel, and update the constructor to contain the following code:
GetPatientData();

5. Hit the F5 key to run the application. You should see the patients list populated:

[image:]
6. Close the application and return to Visual Studio.
7. In the Aqua.DataClient project, set a break-point on the following line of code in the PatientMapper class:
return patient;

8. Hit F5 to run the application again. On the first break, review the contents of the Patient object, and continue to step into the code to follow the path by hitting the F11 key. This will help you understand the communication between the tiers of the application.
9. Once you have reviewed the execution path, close the running application and return to Visual Studio.
10. From the Debug menu, select Disable All Breakpoints.
11. In the MainWindowViewModel class, locate the SelectedPatient function, and add the following code in the if statement which will update the selectedPatient value, and populate the Orders view.
this.selectedPatient = value;
CommandCriteria Criteria = new CommandCriteria();
Criteria.Add("Admittance", this.selectedPatient.Admittance);
ChangePatientCommand command = new ChangePatientCommand(); command.Execute(PatientChanged, Criteria);

12. Hit F5 to run the application. You should now see the ED Patients List populated, as well as the Orders view populated. If you change the selected record in the ED Patients List, notice the Orders view is updated.

[image:]
[bookmark: _Toc230149739][bookmark: _Toc230162275][bookmark: _Toc230162779][bookmark: _Toc230188071][bookmark: _Toc234175640]Lab Summary
In this lab, you learned about the data access strategy in the Aqua application. You learned how to implement Entity Framework Models, ADO.NET Data Services, data client Service References and you learned how the View and ViewModel interact with the data source to bind data in the user interface.
For more information, source code, videos and hands on labs, please visit http://healthcare.codeplex.com.

Command (called from ViewModel, runs Async call)

Repository (defines the query)

Mapper (loads the model)

image1.png

image2.png

image3.emf
View

View Model

Model

Command

RepositoryMapper

Data Context

ASYNC

Operation

Data

Layer

Calls

Creates

Abstracts

oleObject1.bin
View

View Model

Model

Command

Repository

Mapper

Data Context

ASYNC Operation

Data Layer

Calls

Creates

Abstracts

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

