[bookmark: _Toc462569805][image: netfxlogo]	

Hands-On Lab
[bookmark: _Toc440251926][bookmark: _Toc230162250][bookmark: _Toc230162755][bookmark: _Toc230188063][bookmark: _Toc233652575]Lab Manual
[bookmark: _Toc230162251][bookmark: _Toc230162756]Lab02 – Using Windows Azure Blob Storage

[image: Infragistics]

Information in this document, including URL and other Internet Web site references, is subject to change without notice. This document supports a preliminary release of software that may be changed substantially prior to final commercial release, and is the proprietary information of Microsoft Corporation.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

The entire risk of the use or the results from the use of this document remains with the user. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Visual C# and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

	18

[bookmark: _Toc536017581][bookmark: _Toc11402521]Contents

Table of Contents
Lab Manual	1
Lab 02: Working with Windows Azure Blob Storage	1
Lab Objective	2
Getting Started (15 minutes)	3
Exercise 1 – Create the Blob Manager Code (20 minutes)	4
Exercise 2 – Wiring up the BlobManager User Interface (15 minutes)	10
Exercise 3 – Customizing the xamDataGrid Uri Display (5 minutes)	13
Lab Summary	15

Page 15
[bookmark: _Toc106390644][bookmark: _Toc230149728][bookmark: _Toc230162252][bookmark: _Toc230162757][bookmark: _Toc230188064][bookmark: _Toc233652576]Lab 02: Working with Windows Azure Blob Storage
In this lab, you will be introduced to Windows Azure and its Blob Storage feature. You will interact with Windows Azure Blob Storage from a rich-client WPF application, style the application, and perform customizations to the Infragistics WPF xamDataGrid. By the end of this lab, you will understand and know how to:
· Add/Remove/List Azure Blob Containers
· Add/Remove/List Blob Container Entities
· Apply styles to a WPF application
· Customize the Infragistics xamDataGrid to display images from Azure Blob Storage
This lab is the second in a series of labs that will help you understand and learn the technologies used to create the Healthcare CRM application. The following labs are part of this series:
· Lab01 – Prototyping the CRM Application (posted to http://healthcare.codeplex.com)
· Lab02 – Understanding Windows Azure Services (this lab)
· Lab03 – Implementing ADO.NET Data Services and MVVM (coming in June 2009)
By completing the lab, you will have a good understanding of how Windows Azure Blob Storage can be integrated into a larger application. In the Aqua application, we chose Azure Blob Storage as the repository used in the “Diagnosis Support” system.
The data storage plan in Aqua is as follows:
· Core patient and admittance data is stored in a SQL Server database on the corporate LAN at the hospital where the doctor is tending to patients in the emergency room.
· Supporting diagnosis imagery (X-Rays, Scans) are stored in the cloud using Windows Azure Blob Storage, and are accessed from the WPF application via a query to the cloud.

[image:]

The reason behind using Azure was simple – we needed to give doctors from all over world the ability to look up critical patient data that helps in their diagnosis. Windows Azure is a perfect platform for this scenario – a highly available service that can store highly unstructured data and is easy to access.
To learn more about this reference application, and to keep up to date on the progress of the application, please visit this site:
http://healthcare.codeplex.com
Estimated time to complete this lab: 60 minutes
The project files for this lab are in the \source\starter folder.
[bookmark: _Toc106390645][bookmark: _Toc230149729][bookmark: _Toc230162253][bookmark: _Toc230162758][bookmark: _Toc230188065][bookmark: _Toc233652577]Lab Objective
The objective of this lab is to understand the Windows Azure Blob Storage, access containers and entities, style a WPF application and configure the Infragistics xamDataGrid to display Azure data from the cloud.
[bookmark: _Toc230149730][bookmark: _Toc230162254][bookmark: _Toc230162759][bookmark: _Toc230188066][bookmark: _Toc233652578]Getting Started (15 minutes)
In order to complete this lab successfully, you will need to install several technologies. The key ingredient is the Windows Azure SDK, which you will need to create a local instance of the Development Fabric and Development Storage. These are local installations of what you would be working with in the cloud, so you will not be interacting with the cloud, you will be interacting with a local copy of the cloud. This is to simplify the development for the lab. Once you are comfortable with the cloud scenario, it is easy to move your data to Windows Azure at http://www.azure.com.
Windows Azure SDK is supported on the following operating systems:
· Windows Server 2008 Enterprise; Windows Server 2008 Standard; Windows Vista Business; Windows Vista Business 64-bit edition; Windows Vista Home Premium; Windows Vista Home Premium 64-bit edition; Windows Vista Ultimate; Windows Vista Ultimate 64-bit edition
I am using Windows 7 RC (build 7100) and everything functions as expected.
Here are the four links to download the installation packages, once you have downloaded and installed, you can complete the lab.

1. Windows Azure SDK (May 2009 CTP)
http://www.microsoft.com/downloads/details.aspx?FamilyID=22703881-1197-49e5-8231-f49095cfd0bb&displaylang=en

2. Windows Azure Tools for Microsoft Visual Studio May 2009 CTP
http://www.microsoft.com/downloads/details.aspx?FamilyID=11b451c4-7a7b-4537-a769-e1d157bad8c6&displaylang=en

3. WPF Toolkit
http://wpf.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=25047

4. Infragistics NetAdvantage for Win Client 2009 Vol. 1
http://www.infragistics.com/downloads/default.aspx
[bookmark: _Toc536017583][bookmark: _Toc11402523][bookmark: _Toc106390646][bookmark: _Toc230149731][bookmark: _Toc230162255][bookmark: _Toc230162760][bookmark: _Toc230188067]
Once you install the Azure SDK, you will have a new program group in the Start Menu.

[image:]

In this program group, there are two key applications:
1. Development Fabric
2. Development Storage
In order to successfully work with Azure locally, you must always run the Development Fabric, which starts a local instance of Azure. When you start the Development Fabric, it will start in the system tray.
The Development Storage allows you to stop and start the various storage endpoints, and will give you the correct URI of the local storage instance. This is what you should see when you run the Development Storage:
[image:]

Note the three types of storage services you have available – Blob, Queue and Table. In this lab, and in the Aqua project, we will interact with the Blob storage.

[bookmark: _Toc233652579]Exercise 1 – Create the Blob Manager Code (20 minutes)
In this exercise, you will open the Starter project, and add the code that will interact with the Azure Blob Storage.
[bookmark: _Toc106390647][bookmark: _Toc230149732][bookmark: _Toc230162256][bookmark: _Toc230162761]Task 1 – Configure AzureBlobManager Application
1. Open the AzureBlobManager solution from the Labs\Lab02\Source\Starter folder.
2. Add a reference to StorageClient.dll located in the in Labs\Lab02\Source\Bin folder.
StorageClient.dll is a sample project located in the Azure SDK that acts as a wrapper between an application and the Azure storage endpoints. Using this assembly means you do not have to worry about the REST API that Azure expects, you can simply create instances of BlobStorage objects in your applications and use normal method calls to interact with Azure.
3. [bookmark: _Toc105755068][bookmark: _Toc107039656][bookmark: _Toc230149733][bookmark: _Toc230162257][bookmark: _Toc230162762]Add a reference to the WPFToolkit.dll located in the C:\Program Files\WPF Toolkit\v3.5.40320.1\
Note that in the References for the AzureBlobManager application there are references already for the following assemblies:
· Infragistics3.Wpf.DataPresenter.v9.1
· Infragistics3.Wpf.Editors.v9.1
· Infragistics3.Wpf. v9.1
These assemblies are included already because the Window1.xaml file, which is the main UI for this application, has the Infragistics xamDataGrid added to the form.
4. The next step is to add the configuration properties and values needed to access the Windows Azure storage. The following settings are used to access Azure:
· AccountName - specifies the name of your Windows Azure account. The account name is one of the components used to construct the URI of a store resource.
· AccountSharedKey - specifies the key used to authenticate a request made against Windows Azure storage. To authenticate a request, you must sign the request with the key for the account that is making the request.
· BlobStorageEndpoint - specifies the base URI of the blob storage service.
· QueueStorageEndpoint - specifies the base URI of the blob storage service.
· TableStorageEndpoint - specifies the base URI of the blob storage service.
There are multiple ways to accomplish this via configuration files. Since we are working with a rich client application, we can use the Project Settings dialog to add the name/value pairs.
To do this, start by opening the project properties by double-clicking the Properties folder in the AzureBlobManager project.
5. Select the Settings tab, and add the following string properties with their corresponding values:
	Property Name
	Value

	AccountName
	devstoreaccount1

	SharedKey
	Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==

	BlobStorageEndPoint
	http://127.0.0.1:10000/

	QueueStorageEndPoint
	http://127.0.0.1:10001/

	TableStorageEndPoint
	http://127.0.0.1:10002/

Your Properties sheet should look something like this:
[image:]

You now have the correct settings needed to access the Azure objects. Later in the lab, you’ll pass these properties as parameters to create the BlobStorage objects that allow you to interact with Azure directly.
Task 2 – Add the Azure Access Code
In this task, you will add a new class to the application and add the code that interacts with the Azure Containers and Azure Entities.
1. Add a new class to the project by right clicking on the AzureBlobManager project name and select Add -> Class
2. When the Add New Item dialog appears, change the name to BlobManager and click the Add button.
[image:]
3. In the BlobManager class, add the following using statement, which will give this class the objects needed to interact with Azure that are in the StorageClient.dll you added to the project earlier.
using Microsoft.Samples.ServiceHosting.StorageClient;

4. Next, add a public method named ListContainers, the takes 3 string parameters (BlobEndPoint, Account and SharedKey) and returns and IEnumerable for type BlobContainer.
public IEnumerable<BlobContainer> ListContainers(string BlobEndPoint,
 string Account, string SharedKey)
{

}

5. In the ListContainers function, you will need to create an instance of the BlobStorage object, which is where the containers are stored in Azure. To make this happen, you need to pass the correct endpoint, account name and URI for the storage endpoint to a new instance of the StorageAccountInfo object. Once this is created, you pass this object as a parameter to the BlobStorage.Create method, which opens a connection to the blob storage at the specified Azure URI. Add the following code to the ListContainers function to accomplish this:
 StorageAccountInfo AccountInfo =
 new StorageAccountInfo(new Uri(BlobEndPoint),
 null, Account, SharedKey);

 var blobStore = BlobStorage.Create(AccountInfo);
 return blobStore.ListBlobContainers();
Notice the highlighted code, the ListBlobContainers method call returns a list of the containers that exist as the specific URI, and this object is an IEnumerable of type BlobStorage.
6. Add 2 more public methods, named CreateContainer and DeleteContainer.
7. In the CreateContainer method, you will pass the same configuration parameters as the ListContainer method, plus an additional isPublic parameter, which allows you to tag the container you are creating a public or private.

You’ll notice a recurring theme in the code – you are passing the BlobEndPoint, Account and SharedKey parameters, and creating a new instance of the StorageAccountInfo object and passing that the BlobStorage.Create call. You will always need this code to open a connection to the blob storage endpoint.
public void CreateContainer(string ContainerName, bool isPublic,
 string BlobEndPoint, string Account, string SharedKey)
{
 StorageAccountInfo AccountInfo =
 new StorageAccountInfo(new Uri(BlobEndPoint),
 null, Account, SharedKey);

 var blobStore = BlobStorage.Create(AccountInfo);

 ContainerAccessControl accessControl = isPublic ?
 ContainerAccessControl.Public : ContainerAccessControl.Private;

 blobStore.GetBlobContainer(ContainerName).CreateContainer(null, accessControl);
}

8. In the DeleteContainer method, you’ll add the same three configuration parameters, as well as the ContainerName, which is the container you are trying to delete.
public void DeleteContainer(string ContainerName,
 string BlobEndPoint, string Account, string SharedKey)
{
 StorageAccountInfo AccountInfo =
 new StorageAccountInfo(new Uri(BlobEndPoint),
 null, Account, SharedKey);

 var blobStore = BlobStorage.Create(AccountInfo);

 blobStore.GetBlobContainer(ContainerName).DeleteContainer();
}

You now have all of the code added to interact with Azure Blob Containers. By now you should really notice that the availability of the StorageClient assembly makes interacting with Azure Blob Storage very simple.
The next 3 steps will be the code that interacts with the entities that exist in the containers you just wrote the code to work with. In other words, the following three steps contain the code that allows you to interact with the actual blob items.
9. Add a public method named CreateBlob that takes five string parameters – the ContainerName that you are creating the blob in, the FileName of the blob, and the same BlobEndPoint, Account and SharedKey parameters you have added to all of the previous methods.
public void CreateBlob(string ContainerName, string FileName,
 string BlobEndPoint, string Account, string SharedKey)
{
}

10. Next, add the code that creates the blob item by setting the content filename and file stream to the blob you are saving in Azure.
 StorageAccountInfo AccountInfo =
 new StorageAccountInfo(new Uri(BlobEndPoint), null, Account, SharedKey);

 var blobStore = BlobStorage.Create(AccountInfo);

 var container = blobStore.GetBlobContainer(ContainerName);

 BlobProperties props = new BlobProperties(System.IO.Path.GetFileName(FileName));

 BlobContents blobContents =
 new BlobContents(new System.IO.FileStream(FileName, FileMode.Open));

 container.CreateBlob(props, blobContents, true);

11. Add a public method named DeleteBlob that handles the deletion of the blob from a specific container. This method accepts five string parameters – the ContainerName that you are deleting the blob from, the FileName of the blob you want to delete, and the same BlobEndPoint, Account and SharedKey parameters you have added to all of the previous methods.
public void DeleteBlob(string ContainerName, string BlobName,
 string BlobEndPoint, string Account, string SharedKey)
{
 StorageAccountInfo AccountInfo =
 new StorageAccountInfo(new Uri(BlobEndPoint), null, Account, SharedKey);

 var blobStore = BlobStorage.Create(AccountInfo);

 var container = blobStore.GetBlobContainer(ContainerName);

 if (container.DoesBlobExist(BlobName)) {
 container.DeleteBlob(BlobName);
 }
}

12. Add a public method named ListBlobs that takes four string parameters ContainerName, BlobEndPoint, Account and SharedKey and returns an IEnumerable of type Object. This method uses the ListBlobs function to get a list of the blobs in the specific container object.
public IEnumerable<Object> ListBlobs(string ContainerName,
 string BlobEndPoint, string Account, string SharedKey)
{
 StorageAccountInfo AccountInfo = new StorageAccountInfo(new Uri(BlobEndPoint), null, Account, SharedKey);
 var blobStore = BlobStorage.Create(AccountInfo);
 var container = blobStore.GetBlobContainer(ContainerName);
 return container.ListBlobs(string.Empty, false);
}

13. Build you application by hitting Ctrl+Shift+B at the same time. You shouldn’t see any errors. At this point in the lab, you have all of the code you need to interact with Azure Blob Storage; next, you just need to wire it up to a user interface to create a functioning application.

[bookmark: _Toc230149734][bookmark: _Toc230162258][bookmark: _Toc230162763][bookmark: _Toc230188068][bookmark: _Toc233652580]Exercise 2 – Wiring up the BlobManager User Interface (15 minutes)
In this exercise, you will complete several tasks which wire up the code you wrote in the first exercise to the events in the user interface. The following image highlights the buttons in Window1.xaml, so you have an idea of what the buttons do on the main form. The event handlers already exist in Window1.xaml.cs, but the code that glues the UI to the blob management code does not.
[image:]
1. Open Window1.xaml by double-clicking on the form in the Solution Explorer.
2. Hit the F7 key to bring up the code-behind for this XAML file.
3. Add a using statement for the StorageClient assembly:
using Microsoft.Samples.ServiceHosting.StorageClient;

4. Add three class level string variables named accountName, sharedKey and blobStorageEndPoint. These variables will hold the values from the configuration file you added in exercise #1, and you will pass these variables to the method calls you created in the BlobManager class.
private string accountName;
private string sharedKey;
private string blobStorageEndPoint;

5. In the InitializeComponent method, add code that will retrieve the settings and store them in the variables you just added.
[bookmark: _Toc105755083][bookmark: _Toc107039669]accountName = Properties.Settings.Default.AccountName;
sharedKey = Properties.Settings.Default.SharedKey;
blobStorageEndPoint = Properties.Settings.Default.BlobStorageEndPoint;

6. In the btnLoadContainers_Click event handler, add the following code that will get the list of blob containers by calling the ListContainers method you added in the BlobManager class, and bind them to the ListBox control. Note the setting of the DisplayMemberPath property, this tells the ListBox which field in the IEnumerable to display.
BlobManager bm = new BlobManager();
var containers = bm.ListContainers(blobStorageEndPoint, accountName, sharedKey);

listBox1.DisplayMemberPath = "ContainerName";
listBox1.ItemsSource = containers.ToList();

7. In the btnAddContainer_Click event handler, add the following code that will read the container name from the textbox, and create the named container at the blobStorageEndPoint location.
if (this.textBox1.Text != "")
{
 BlobManager bm = new BlobManager();
 bm.CreateContainer(textBox1.Text.ToLower(), true, blobStorageEndPoint, accountName, sharedKey);
 var containers = bm.ListContainers(blobStorageEndPoint, accountName, sharedKey);

 listBox1.DisplayMemberPath = "ContainerName";
 listBox1.ItemsSource = containers.ToList();
}

8. In the btnDeleteContainer_Click event handler, add the following code that will delete the selected container, and prompt the user to validate their intentions.
if (MessageBox.Show(@"Are you sure you want to delete " +
 ((BlobContainer)this.listBox1.SelectedValue).ContainerName,
 "Delete Blob Container",
 MessageBoxButton.YesNoCancel,
 MessageBoxImage.Question) == MessageBoxResult.Yes)
{
 BlobManager bm = new BlobManager();
 string itm = ((BlobContainer)this.listBox1.SelectedValue).ContainerName;
 bm.DeleteContainer(itm, blobStorageEndPoint, accountName, sharedKey);
 btnLoadContainers_Click(null, null);
}

9. In the listBox1_SelectionChanged event handler, add the code that determines which blob container was selected, and then gets the blob items from the ListBlobs method call and binds the returning list to the xamDataGrid.
if (listBox1.SelectedIndex != -1)
{
string itm = ((BlobContainer)this.listBox1.SelectedValue).ContainerName;
selectedContainer.Text = itm;
BlobManager bm = new BlobManager();
var blobs = bm.ListBlobs(itm, blobStorageEndPoint, accountName, sharedKey);
this.xamDataGrid1.DataSource = blobs;
}

10. Finally, add the following code which prompts the user for the blob images they want to add to the selected container. The Win32.OpenFileDialog allows multiple selections, so in this case, you’ll enumerate through the selected items and add them to Azure Blob Storage by passing the file to the CreateBlob method in the BlobManager class.

Microsoft.Win32.OpenFileDialog dialog = new Microsoft.Win32.OpenFileDialog();
{
 dialog.Title = "Select a file";
 dialog.Filter = "All files|*.*";
 dialog.Multiselect = true;

 string container = ((BlobContainer)this.listBox1.SelectedValue).ContainerName;
 dialog.ShowDialog();
 foreach (var f in dialog.FileNames)
 {
 BlobManager bm = new BlobManager();
 bm.CreateBlob(container, f, blobStorageEndPoint, accountName, sharedKey);
 }

 BlobManager bm1 = new BlobManager();
 var blobs = bm1.ListBlobs(container, blobStorageEndPoint, accountName, sharedKey);
 this.xamDataGrid1.DataSource = blobs;
}

11. Hit F5 to run the application. You should see the default storagesamplecontainer and its contents.
[image:]

12. Add a new blob container named medicalimages by typing the text medicalimages in the textbox and clicking the “+” button. Note that Azure containers can only be lower case, so if you type any character in caps, it will be added in lower case. Once you add the container, you should see something like this:
[image:]
13. Next, click the Add Image button, and when the OpenFileDialog appears, navigate to the Labs\Lab02\Source\Images folder and select all of the images in the folder and click the Open button to add the images to the blob container. You should see something like this:
[image:]

Note the Name and Uri properties and the other fields that describe each item in the blob container. Since we are storing images in Azure, it only makes sense that we display the image in the xamDataGrid. Using a custom CellValuePresenter, this is easily accomplished.
[bookmark: _Toc233652581]Exercise 3 – Customizing the xamDataGrid Uri Display (5 minutes)
In this exercise, you will create a custom style that targets the CellValuePresenter of the xamDataGrid so the image at the specific Uri will display instead of plain text.

1. In the Window1.xaml file, directly under the <Window.Resources> tag, add the following XAML which specifies a new ControlTemplate that will target the type CellValuePresenter.
<Style x:Key="FieldImage"
 TargetType="{x:Type igDP:CellValuePresenter}" >
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type igDP:CellValuePresenter}">
 <Border BorderBrush="Black" BorderThickness="0.5"
 Width="{TemplateBinding Width}"
 Height="{TemplateBinding Height}">
 <Image Margin="6"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}"
 Source="{Binding
 RelativeSource={RelativeSource TemplatedParent},
 Path=Content}"/>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

2. Next, add the new style to the xamDataGrid. In Window1.xaml, locate the <igDP:XamDataGrid> tag, and add the following Field.Settings for the Uri field in the specified location.
<igDP:Field.Settings>
 <igDP:FieldSettings
 CellValuePresenterStyle="{StaticResource FieldImage}"
 CellMinWidth="200" />
</igDP:Field.Settings>

3. Hit F5 to run the application. Once it starts, select the medicalimages container from the list. You should now see the images displayed in the grid, like this:

[image:]

[bookmark: _Toc230149739][bookmark: _Toc230162275][bookmark: _Toc230162779][bookmark: _Toc230188071][bookmark: _Toc233652582]Lab Summary
In this lab, you learned how to implement Azure Blob Storage, how to add and remove items to a blob container, and how to customize the xamDataGrid to display images in a grid cell.
For more information, source code, videos and hands on labs, please visit http://healthcare.codeplex.com.

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

