[bookmark: _Toc462569805][image: netfxlogo]	

Hands-On Lab
[bookmark: _Toc440251926][bookmark: _Toc230162250][bookmark: _Toc230162755][bookmark: _Toc230188063]Lab Manual
[bookmark: _Toc230162251][bookmark: _Toc230162756]Lab01 – Prototyping the Aqua – A Healthcare CRM Application

[image: Infragistics]

Information in this document, including URL and other Internet Web site references, is subject to change without notice. This document supports a preliminary release of software that may be changed substantially prior to final commercial release, and is the proprietary information of Microsoft Corporation.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

The entire risk of the use or the results from the use of this document remains with the user. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Visual C# and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

	11

[bookmark: _Toc536017581][bookmark: _Toc11402521]Contents

Lab Manual	1
Lab 01: Prototyping the CRM Application	1
Lab Objective	2
Getting Started	3
Exercise 1 – Evaluating the Data Services (10 minutes)	3
Exercise 2 – Populating the Model Classes (10 minutes)	5
Exercise 3 – Creating the User Controls (20 minutes)	8
Exercise 4 – Wiring up the Application Shell and User Controls (15 minutes)	15
Lab Summary	19

Page i

Page 2
[bookmark: _Toc106390644][bookmark: _Toc230149728][bookmark: _Toc230162252][bookmark: _Toc230162757][bookmark: _Toc230188064]Lab 01: Prototyping the CRM Application
In this lab, you will be introduced to the application structure of the CRM application. The goal of this stage of the process had several goals:
· Better understand the user interaction
· Better understand the breadth of the application
· Stub out the various layers in the architecture
A rich prototype at this stage in the process also serves as a communication vehicle to the team and the target audience. Various techniques and assumptions in this lab will change over time as the application matures and additional services are added.
This lab is the first in a series of labs that will help you understand and learn the technologies used to create the Healthcare CRM application. The following labs are part of this series:
· Lab01 – Prototyping the CRM Application (this lab)
· Lab02 – Understanding Windows Azure Services (coming in June 2009)
· Lab03 – Implementing ADO.NET Data Services and MVVM (coming in June 2009)

From a high-level application view, the CRM application initially looked like this:

[image:]

As the application model matures, and we introduce additional services, the diagram will change to reflect the application as it nears its deployment phase.
In this prototype, the current realization of the application is show in this diagram (which is what you will implement part of in this lab):
[image:]

As the data access strategy for the application changes (to ADO.NET Data Services for example), the implementation details in the layers will change as well. This will be discussed as we build out the application and continue the adventure through Lab #3.
To learn more about this reference application, and to keep up to date on the progress of the application, please visit this site:
http://healthcare.codeplex.com
Estimated time to complete this lab: 60 minutes
The project files for this lab are in the \source\starter folder.
[bookmark: _Toc106390645][bookmark: _Toc230149729][bookmark: _Toc230162253][bookmark: _Toc230162758][bookmark: _Toc230188065]Lab Objective
The objective of this lab is to understand the CRM application, implement application layers and to implement a piece of the main user interface. This lab will focus on 3 user interface pieces to the application:
· EDPatientsListView.xaml
· OrdersView.xaml
· PhysicianBanner.xaml
Along with these UI pieces (the View), you will implement the Model, ViewModel and Data Services that enable the application to run correctly. Finally, you will implement the 3 Views into the MainWindow.xaml, which is what the end user ultimately interacts with.

[bookmark: _Toc230149730][bookmark: _Toc230162254][bookmark: _Toc230162759][bookmark: _Toc230188066]Getting Started
This project uses the WPF Express Grid from Infragistics and other controls from the Infragistics NetAdvantage toolset. To be successful with this lab, you will need to install the NetAdvantage Win Client WPF product. This suite contains controls like the Grid, Tab, ComboBox, and Charting that are used in this application.
To get the bits to install, go here:
http://www.infragistics.com/downloads/default.aspx
and download the NetAdvantage for Win Client 2009 Vol. 1 as shown here:

[image:]

Once this is installed, you are ready to complete this lab and use the controls in subsequent labs. Keep in mind that you can also download the NetAdvantage for WPF Express 2009 Vol. 1 – Hotfix, which is the free version of the Grid control for WPF, as well as other data entry controls.
[bookmark: _Toc536017583][bookmark: _Toc11402523][bookmark: _Toc106390646][bookmark: _Toc230149731][bookmark: _Toc230162255][bookmark: _Toc230162760][bookmark: _Toc230188067]Exercise 1 – Evaluating the Data Services (10 minutes)
In this exercise, you will examine the data layer for the application and add code to complete the data access strategy for the prototype.
[bookmark: _Toc106390647][bookmark: _Toc230149732][bookmark: _Toc230162256][bookmark: _Toc230162761]Task 1 – Explore the PatientExplorer Application
1. Open the PatientExplorer solution from the Labs\Lab01\Source\Starter folder.
2. Expand the References, Converters, Data, Model, Services, View and ViewModel folders. Your project structure should look like this:
[image:]
[bookmark: _Toc105755068][bookmark: _Toc107039656][bookmark: _Toc230149733][bookmark: _Toc230162257][bookmark: _Toc230162762]Task 2 – Complete the DataServices Functionality
In this task, you will complete the DataServices functionality so it can correctly connect to the database and populate the Model classes with data from the database. The code you will implement here is the standard CRUD (Create, Read, Update, Delete) code that every application uses, and can normally be achieved using a code generator.
1. Open the DataServices.cs file in the Services folder.
2. Note the Model namespace in the class file, this allows you to use the specific types needed by the data functions.
using PatientExplorer.Model;
Note the various public functions in this class that return specific types. These types are all defined in the Model, and many of the types are being returned as ObservableCollection objects. In WPF data binding, the new ObservableCollection class, which enables a much richer experience when binding objects to the UI. When data in an ObservableCollection is added, refreshed, replaced, deleted, etc, the CollectionChanged event is raised, which allows your UI to react according without having to implement special events to detect when data changes in you underlying data.
3. Add the GetPatientAllergies function by adding the code that connects to the database, retrieves the PatientAllergy data based on the PatientID, and populates this data into a new instance of the PatientAllergy object which is named patientAllergies.
public ObservableCollection<PatientAllergy> GetPatientAllergies(int patientID)
{
 ObservableCollection<PatientAllergy> patientAllergies = new ObservableCollection<PatientAllergy>();
 PatientAllergy patientAllergy = null;
 string connString = ConfigurationManager.ConnectionStrings["PatientExplorer.Properties.Settings.MedicalDataConnectionString"].ConnectionString;

 using (SqlConnection conn = new SqlConnection(connString))
 {
 using (SqlCommand cmd = new SqlCommand("Select * from PatientAllergy where PatientID='" + patientID + "'", conn))
 {
 conn.Open();
 using (IDataReader rdr = cmd.ExecuteReader())
 {
 while (rdr.Read())
 {
 patientAllergy = new PatientAllergy();
 patientAllergy.ID = rdr.GetInt32(rdr.GetOrdinal("ID"));
 patientAllergy.PatientID = rdr.GetInt32(rdr.GetOrdinal("PatientID"));
 patientAllergy.AllergyID = rdr.GetInt32(rdr.GetOrdinal("AllergyID"));
 patientAllergies.Add(patientAllergy);
 }
 }
 }
 }
 return patientAllergies;
}

4. Review the remaining functions in this class, and note the similarities across each return object. Also note the use of embedded SQL in these functions. As the project progresses beyond the prototype state, you will be replacing the SQL statements with Entity Framework objects using ADO.NET Data Services.
5. From the Build menu, click Build Solution. Your project should compile with no errors.
[bookmark: _Toc230149734][bookmark: _Toc230162258][bookmark: _Toc230162763][bookmark: _Toc230188068]Exercise 2 – Populating the Model Classes (10 minutes)
In this exercise, you will complete several tasks which update the model classes with the method calls to the DataService layer. At this point in the lab, the DataServices.cs class is updated with all of the functions we need to connect to the database and retrieve the data that will ultimately update the user controls in the UI. In Exercise 1, you added the PatientExplorer.Model namespace to the DataServices class, which gave the data access code insight into the objects that it was working with. The next tasks will populate the model classes with the data.
[bookmark: _Toc105755069][bookmark: _Toc107039657][bookmark: _Toc230149735][bookmark: _Toc230162259][bookmark: _Toc230162764]Task 3 – Update the PatientAllergy class
In this task, you will update the PatientAllergy class so it can access the DataServices class and retrieve its data.
Follow these steps to update the PatientAllergy class.
[bookmark: _Toc230162260]Double-click the PatientAllergy class in the Model folder
[bookmark: _Toc230162261][bookmark: _Toc230162765]Add the PatientExplorer.Services namespace to the class
using PatientExplorer.Services;
[bookmark: _Toc230162262][bookmark: _Toc230162766][bookmark: _Toc105755083][bookmark: _Toc107039669]Create a new private instance of the DataServices class in the PatientAllergy class before the public ID property.
private DataServices dataServices = new DataServices();
public int ID { get; set; }
[bookmark: _Toc230162263][bookmark: _Toc230162767]Call the GetAllergy function from the DataServices class in the getter method of the public property Allergy.
allergy = dataServices.GetAllergy(this.AllergyID);
[bookmark: _Toc230162264][bookmark: _Toc230162768]From the Build menu, click Build Solution. Your project should compile with no errors.
You will notice that the PatientAllergy class was pre-populated with the fields you will use in the views. This was done for your convenience, and similar to the CRUD operations you completed in exercise 1, you can accomplish much of this with code generation utilities. If you look at the GetPatientAllergy function in the data layer, you should start to see how the model and the data layer are going to interact for this prototype.
[bookmark: _Toc230162265][bookmark: _Toc230162769]Task 4 – Update the Admittance class and Patient class
In this task, you will update the Admittance class so it can access the DataServices class and retrieve its data. The Admittance class is very important to the application, as it contains the key objects the make up a specific patient’s admittance (PatientID) to the hospital. This object also populates the Patient, Complaint and Order object, so when populated, it contains the pertinent information for this admittance.
You will also uncomment a line of code in the Patient class, which calls the GetPatientAllergies function you added in a previous task.
Follow these steps to update the Admittance class.
1. [bookmark: _Toc230162266][bookmark: _Toc230162770]Double-click the Admittance class in the Model folder
[bookmark: _Toc230162267][bookmark: _Toc230162771]Add the PatientExplorer.Services namespace to the class
using PatientExplorer.Services;
[bookmark: _Toc230162268][bookmark: _Toc230162772]Create a new private instance of the DataServices class in the Admittance class before the public ID property.
private DataServices dataServices = new DataServices();
public int ID { get; set; }
[bookmark: _Toc230162269][bookmark: _Toc230162773]Call the GetPatient function from the DataServices class in the getter method of the public property EDPatient.
patient = dataServices.GetPatient(this.PatientID);
[bookmark: _Toc230162270][bookmark: _Toc230162774]Call the GetComplaints function from the DataServices class in the getter method of the public property Complaints.
complaints = dataServices.GetComplaints(this.ID);
[bookmark: _Toc230162271][bookmark: _Toc230162775]Call the GetOrders function from the DataServices class in the getter method of the public property Orders.
orders = dataServices.GetOrders(this.ID);
Double-click the Patient.cs class file to open it in the code editor.
Scroll down in the code file until you see the get function for Allergies.
Uncomment the highlighted line of code which calls the GetPatientAllergies function.
this.allergies = dataServices.GetPatientAllergies(this.PatientID);
Task 5 – Review the Model Classes
In this task, you will review the remaining model classes to familiarize yourself with the objects that make up the application.
1. Double-click the following classes, and review the object structure for each class
a. Complaint
b. ComplaintTestResult
c. Med
d. Order
e. Patient
The overall class hierarchy for the model formulates to this:
[image:]

[bookmark: _Toc230149737][bookmark: _Toc230162273][bookmark: _Toc230162777][bookmark: _Toc230188069]Exercise 3 – Creating the User Controls (20 minutes)
In this exercise, you will create 2 user controls that will be used in the main UI. You will also add an existing user control to the application.
Task 6 – Adding the PhysiciansBannerView User Control
In this task, you will add the PhysiciansBannerView user control to the project, which has been previously created.
Follow these steps to add the PhysiciansBannerView user control to the project:
1. Right-click on the View Folder, and select Add -> Existing Item from the context menu.
Navigate to the Lab01\Source\Starter\View folder, and select PhysicianBannerView.xaml.cs and click Add.
[image:]
Once you click Add, the Add Existing Item dialog will disappear, and you should see the PhysicianBannerView.xaml file under the View folder.
Right-click on the View folder, and select Add -> User Control.
In the Add New Item dialog, change the name to OrdersView.xaml and click Add.
[image:]
You should now see OrdersView.xaml under the View folder.
Repeat steps 3 and 4, and add a new UserControl named EDPatientsListView.xaml.
[bookmark: _Toc230149738][bookmark: _Toc230162274][bookmark: _Toc230162778]Double-click the OrdersView.xaml UserControl to bring into edit mode in the IDE. You should be looking at this:
[image:]

Update the <UserControl> root object to include the namespace references for the Infragistics DataPresenter and Editors control as well as the correct Horizontal and Vertical alignment of the UserControl.
<UserControl x:Class="PatientExplorer.View.OrdersView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:igDP="http://infragistics.com/DataPresenter"
 xmlns:igEditors="http://infragistics.com/Editors"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch">

Update the Grid layout to include RowDefinitions and ColumnDefinitions. The Row and Column layout will allow you to position elements within the UserControl in a table-like layout.
 <Grid>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="1*"></ColumnDefinition>
 <ColumnDefinition Width="1*"></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <!-- XamDataGrid Goes Here -->

 </Grid>
Add a XamDataGrid named xdgOrders with a DataSource of MedicationOrders. This will bind the grid to the MedicationOrders data. When working with the XamDataGrid, there are 3 concepts that are important:
1) The Name and DataSource for the grid
2) FieldLayoutSettings – these properties define the overall configuration for the grid, for example, if you want to allow Add New Records, or if the grid should AutoGenerateFields based on the data source. A default implementation of the grid will not use FieldLayoutSettings, they are only used if you want to do something beyond the defaults.
3) FieldLayouts – these define each field as you want it to data bind from the data source. For the xdgOrders grid, the AutoGenerateFields = False in the FieldLayoutSettings, which means you need to define the fields as they should bind via FieldLayouts. If you set AutoGenerateFields =True in FieldLayoutSettings, you do not need to specify individual FieldLayouts unless you are adding unbound columns.

For this step, add the following code between the </Grid.ColumnDefinitions> tag and the </Grid> tag.

<igDP:XamDataGrid x:Name="xdgOrders" Grid.Column="0" Grid.Row="1"
 Grid.ColumnSpan="2"
 DataSource="{Binding Path=MedicationOrders}"
 GroupByAreaLocation="None">

</igDP:XamDataGrid>

Add the FieldLayoutSettings of the XamDataGrid to set properties in the AutoGenerateFields, AllowAddNew, AddNewRecordLocation and RecordSelectorLocation.
<igDP:XamDataGrid x:Name="xdgOrders" Grid.Column="0" Grid.Row="1"
 Grid.ColumnSpan="2"
 DataSource="{Binding Path=MedicationOrders}"
 GroupByAreaLocation="None">

 <igDP:XamDataGrid.FieldLayoutSettings>
 <igDP:FieldLayoutSettings
 AutoGenerateFields="False"
 AllowAddNew="True"
 AddNewRecordLocation="OnTopFixed"
 RecordSelectorLocation="None"
 />
 </igDP:XamDataGrid.FieldLayoutSettings>

</igDP:XamDataGrid>

Add the fields that the grid should bind to from the DataSource of MedicationOrders by adding a collection of Fields to the FieldLayouts collection.
<igDP:XamDataGrid x:Name="xdgOrders" Grid.Column="0" Grid.Row="1"
 Grid.ColumnSpan="2"
 DataSource="{Binding Path=MedicationOrders}"
 GroupByAreaLocation="None">

 <igDP:XamDataGrid.FieldLayoutSettings>
 <igDP:FieldLayoutSettings
 AutoGenerateFields="False"
 AllowAddNew="True"
 AddNewRecordLocation="OnTopFixed"
 RecordSelectorLocation="None"
 />
 </igDP:XamDataGrid.FieldLayoutSettings>

 <igDP:XamDataGrid.FieldLayouts>
 <igDP:FieldLayout>
 <igDP:FieldLayout.Fields>
 <igDP:UnboundField
 Label="Med"
 BindingPath="Medication.Name">
 <igDP:Field.Settings>
 <igDP:FieldSettings
 CellWidth="60"
 CellMinWidth="30"
 LabelWidth="60"
 LabelMinWidth="30"/>
 </igDP:Field.Settings>
 </igDP:UnboundField>
 <igDP:Field
 Label="Dose"
 Name="Dosage">
 <igDP:Field.Settings>
 <igDP:FieldSettings
 CellWidth="60"
 CellMinWidth="30"
 LabelWidth="60"
 LabelMinWidth="30"
 />
 </igDP:Field.Settings>
 </igDP:Field>
 <igDP:Field
 Label="Unit"
 Name="Unit">
 <igDP:Field.Settings>
 <igDP:FieldSettings
 CellWidth="60"
 CellMinWidth="30"
 LabelWidth="60"
 LabelMinWidth="30" />
 </igDP:Field.Settings>
 </igDP:Field>
 <igDP:Field
 Label="Freq"
 Name="Frequency">
 <igDP:Field.Settings>
 <igDP:FieldSettings
 CellWidth="60"
 CellMinWidth="30"
 LabelWidth="60"
 LabelMinWidth="30" />
 </igDP:Field.Settings>
 </igDP:Field>
 <igDP:Field
 Label="Ind"
 Name="Indication">
 <igDP:Field.Settings>
 <igDP:FieldSettings
 CellWidth="60"
 CellMinWidth="30"
 LabelWidth="60"
 LabelMinWidth="30" />
 </igDP:Field.Settings>
 </igDP:Field>
 </igDP:FieldLayout.Fields>
 </igDP:FieldLayout>
 </igDP:XamDataGrid.FieldLayouts>
</igDP:XamDataGrid>

You have now completed the UI for the OrdersView user control. Next, you’ll perform similar tasks on the EDPatientsListView.xaml user control.	
Select Build Solution form the Build menu to compile your application, you should not see any errors.
Double-click the EDPatientsListView.xaml to bring into edit mode in the IDE.
Update the <UserControl> root object to include the namespace references for the Infragistics DataPresenter and Editors control as well as the correct Horizontal and Vertical alignment of the UserControl.
<UserControl x:Class="PatientExplorer.View.OrdersView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:igDP="http://infragistics.com/DataPresenter"
 xmlns:igEditors="http://infragistics.com/Editors"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch">

Update the Grid layout to include RowDefinitions and ColumnDefinitions. The Row and Column layout will allow you to position elements within the UserControl in a table-like layout.
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition
 Height="Auto"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 <!-- XamDataGrid Goes Here -->

</Grid>
Add a XamDataGrid named xdgEDPatientsList and set the DataSource, ActiveRecord and GroupByAreaLocation to reflect the following:
<igDP:XamDataGrid
 x:Name="xdgEDPatientsList"
 Grid.Row="1"
 DataSource="{Binding Path=PatientList}"
 ActiveRecord="{Binding Path=SelectedRecord,
 Mode=TwoWay,
 UpdateSourceTrigger=PropertyChanged}"
 GroupByAreaLocation="None">

 <!-- Add Resources Here -->

 <!-- Add FieldLayoutSettings Here -->

 <!-- Add FieldLayouts Here -->

</igDP:XamDataGrid>
Add the XamDataGrid.Resources XAML as indicated in the previous code block. This will create a Style which sets the TextWrapping property to Wrap for the XamTextEditor control, which is embedded in the grid.
<igDP:XamDataGrid.Resources>
 <Style
 TargetType="{x:Type igEditors:XamTextEditor}"
 x:Key="WrapText">
 <Setter
 Property="TextWrapping"
 Value="Wrap" />
 </Style>
</igDP:XamDataGrid.Resources>

Add the FieldLayoutSettings of the XamDataGrid to set properties in the AutoGenerateFields, AllowAddNew, AllowDelete and RecordSelectorLocation.
<igDP:XamDataGrid.FieldLayoutSettings>
 <igDP:FieldLayoutSettings
 AutoGenerateFields="False" RecordSelectorLocation="None"
 AllowAddNew="False"
 AllowDelete="False"
 />
</igDP:XamDataGrid.FieldLayoutSettings>
Add the fields that the grid should bind to from the DataSource of PatientList by adding a collection of Fields to the FieldLayouts collection.
<igDP:XamDataGrid.FieldLayouts>
 <igDP:FieldLayout>
 <igDP:FieldLayout.Fields>
 <igDP:Field
 Label="Complaints"
 Name="ComplaintsCSV">
 </igDP:Field>
 <igDP:Field
 Label="Sev"
 Name="Severity">
 <igDP:Field.Settings>
 <igDP:FieldSettings
 CellWidth="50"
 LabelWidth="50"></igDP:FieldSettings>
 </igDP:Field.Settings>
 </igDP:Field>
 <igDP:Field
 Label="Patient"
 Name="PatientFullName">
 <igDP:Field.Settings>
 <igDP:FieldSettings
 CellWidth="100"
 LabelWidth="100"></igDP:FieldSettings>
 </igDP:Field.Settings>
 </igDP:Field>
 </igDP:FieldLayout.Fields>
 </igDP:FieldLayout>
 </igDP:XamDataGrid.FieldLayouts>
You have now completed the XAML portion of the EDPatientsListView.xaml user control. Unlike the OrderView.xaml, this user control does have some code-behind.
Hit the F7 key to get to the code-behind for the EDPatientsListView.xaml.
Add a new routed event handler for xdgEDPatientsList.Loaded after InitializeComponent in the constructor.
public EDPatientsListView()
{
 InitializeComponent();
 xdgEDPatientsList.Loaded += new RoutedEventHandler(xdgEDPatientsList_Loaded);
}		

Add the code for the xdgEDPatientsList_Loaded event.
void xdgEDPatientsList_Loaded(object sender, RoutedEventArgs e)
{
 xdgEDPatientsList.ActiveRecord = this.xdgEDPatientsList.Records[0];
}
Select Build Solution form the Build menu to compile your application, you should not see any errors.
You have completed the user controls that will be used by the main application shell. In the next exercise, you will complete the lab by adding the user controls to the main window and running the application.
[bookmark: _Toc230188070]Exercise 4 – Wiring up the Application Shell and User Controls (15 minutes)
In this exercise, you will complete the lab by updating the MainWindow.xaml with the user controls created in earlier steps. Once this task is completed, you will have the basic application shell working, with 3 user controls communicating with the database in a variation of the MVVM pattern used for this prototype.
Task 7 – Updating the MainWindow Application Shell
In this task, you will add the 3 user controls, EDPatientsListView, OrdersView & PhysiciansPatientBanner to the MainWindow.xaml application shell.
Follow these steps to update MainWindow.xaml.
1. Double-click MainWindow.xaml, which is located in the root of the project, to open the XAML for editing in the main window.
2. Update the <Window> root object to include the view namespace.
x:Class="PatientExplorer.MainWindow"
3. After the XAML which defines the Grid.RowDefinitions, add the PhysicianBannerView to the layout.
<view:PhysicianBannerView Grid.Row="1" Grid.RowSpan="1" />
4. Hit the F5 key to run the application. You should see this:
[image:]
If you select the dropdown in the banner, you will see the patient admittances listed.
5. Close the application to return to the XAML editor.
6. After the previous line of XAML you added, insert the following XAML which will add the WorkspaceItemsControl to the grid layout.
<igPanel:WorkspaceItemsControl
 x:Name="workspaceControl"
 d:LayoutOverrides="Width"
 Grid.Row="2" >

 <!-- Add WorkspaceItem objects here -->

</igPanel:WorkspaceItemsControl>
7. Add the following XAML which defines the actual panels, or WorkspaceItem objects, that will make up the user interface. Note the Title property as you add the items, they will ultimately map to the complete set of Views that make up the application. The ones you have created in this lab are ED Patients List and Orders.
<igPanel:WorkspaceItem
	Title="ED Patient List"
	Width="150"
	Height="300"
	Canvas.Left="0"
	Canvas.Top="0">
</igPanel:WorkspaceItem>

<igPanel:WorkspaceItem
	Title="Test Results"
	Width="200"
	Height="150"
	Canvas.Left="150"
	Canvas.Top="0" />

<igPanel:WorkspaceItem
	Title="Vital Signs"
	Width="100"
	Height="150"
	Canvas.Left="150"
	Canvas.Top="150" />

<igPanel:WorkspaceItem
	Title="Orders"
	Width="100"
	Height="150"
	Canvas.Left="250"
	Canvas.Top="150">
</igPanel:WorkspaceItem>

<igPanel:WorkspaceItem
	Title="Patient Record"
	Width="150"
	Height="120"
	Canvas.Left="350"
	Canvas.Top="0"/>

<igPanel:WorkspaceItem
	Title="Clinical Notes"
	Width="150"
	Height="120"
	Canvas.Left="350"
	Canvas.Top="120" />

<igPanel:WorkspaceItem
	Title="Diagnosis Support"
	Width="150"
	Height="60"
	Canvas.Left="350"
	Canvas.Top="240" />
8. Hit the F5 key to run the application. You should see this:
[image:]
This is the main tile panel layout for the application as described in this video:
http://community.infragistics.com/ux/media/p/94705.aspx
The next step is to load the user controls into the WorkspaceItem objects.
9. Close the application to return to the XAML editor in Visual Studio.
10. Update the ED Patients List and Orders WorkspaceItem objects to reflect the following:
<igPanel:WorkspaceItem
	Title="ED Patient List"
	Width="150"
	Height="300"
	Canvas.Left="0"
	Canvas.Top="0">
 <view:EDPatientsListView
		Loaded="OnPatientsViewLoaded" />
</igPanel:WorkspaceItem>

<igPanel:WorkspaceItem
	Title="Orders"
	Width="100"
	Height="150"
	Canvas.Left="250"
	Canvas.Top="150">
 <view:OrdersView
		Loaded="OnOrdersViewLoaded" />
</igPanel:WorkspaceItem>
This XAML loads the appropriate user controls in the WorkspaceItem. It also fires off the Loaded routed event, which creates instances of the appropriate ViewModels, which create the data objects that ultimately are binding the user controls.
11. Hit the F5 key to run the application, you should see this:
[image:]
As you select items from the dropdown list, or select patient admittance items from the ED Patients List, notice that data in the other user controls is being updated. If you remember, the only code behind in the main UI shell is to create the ViewModel data context; there is no special code to handle the updates between the user controls. The data context in each control is being updated by the ObservableCollection objects that contain the data.
[bookmark: _Toc230149739][bookmark: _Toc230162275][bookmark: _Toc230162779][bookmark: _Toc230188071]Lab Summary
In this lab, you created the prototype user interface for the Healthcare CRM application. You learned how data is being retrieved from the database, how it is bound to user controls, and ultimately how it is being displayed in the main UI shell. For more information, source code, videos and hands on labs, please visit http://healthcare.codeplex.com.

image3.png
HCRMXXX
Client

Application e

Search

HCRMXXX.Azure

SQL Server 2008

Migrate to Azure SDS in future)

Application

image4.png
HCRIVIXXX [RRVEA T}

Client View-Model
Application S
DataService

LocalsQL
2008 Express
Database

image5.png
Get the Latest Downloads

| evatating?

1f you'd like to try out one of our products, you
can download the latest version in one of the
installers to the right. Our components work the
same whether you already own the product or not
— you get to see all of it in action. No features
are disabled during your trial period.

We just ask that you register to provide us with
‘some minimal contact information <o that we can
stay in touch and ensure that your evaluation is
going as smoothly as possible.

Netadvantage Select 2009 Vol. 1

Netadvantage for Web Client 2009 Vl. 1

Netadvantage for Silverlight Data
Visualization 2009 Vol. 1

image6.png
& (3 patientixplorer
4 Properties
- L References
D IG.CRM
3 Infragistcs3 Wpf DstPresenters .1 bpress
3 Infragistcs3 Wpf Editors»9.1
3 Infragistcs3 Wt Editors 0.1 Express
3 Infragistcs3 Wpf 0.1
3 Infragitics3 Wpfa8 L Express
- PresentationCore
-3 PresentationFramework
@ System
@ System.configuration
@ System.Core
-3 SystemDats
-3 System.Data.DatsSetbrtensions
@ Systemml
-3 SystemXmLing
-3 UlAutomationProvider
-3 WindowsBse
- [Converters
) PatientViewModelConvertercs
= [Data
3 MediclData.mdf
) MedicalReltionships.xps
- [Model
@) Admittancecs
) Allrgy.cs
2 ClassDiagram.cd
) Complaintcs
@) ComplaintTestResutcs
) Medes
@) Ordercs
@) Patientcs
) PatientAllrgy.cs
- [Services
&) Datasenices.cs
View
= [ViewModel
) EDPatinetsListViewModel.cs
) MsinWindowViewModel.cs
) OrdersVieModelcs
) PatientViewModel.cs
2] ViewModelBase.cx
3 sppiconfiy
) Appaxaml
5 MainWindovixam

(& Solution Explorer [Properties [Class View

image7.png
D INotifyCollectionChanged.
INotfyPropertyChanged
ObservableCollection<T>

¥ admittances | GenericClass
+ Collection<T>

o alergies

) IBindingList
List
Alergies ICollecton
DOB = Fields. IEnumerable
FirstName ¥ patient o dataSenvices ICancelAdNew
Gender S S properties IRsieltemChangedvents
LastName Comments @ orers (R)
o orders nglist<T> ©
MiddleName Complaints. GenericClass
PatientlD Dispostton + Collection<T>
s
Suffix EDPatient
m
Location
Onders ——
PaientD Compiint
Severity
complaints
StaffAttendingID o comp S
StHRNID r
Timestampln o dataServices
TimestampOut & Propertes
—_ ' Admitianceld
S ComplintTest..
= 0]
' patientComplaint

o complaintTesResult

image8.png
7 Add Eisting Item -

|« HOLS » Lsb0l » Source » Stater » View

2

Organize = Newfolder

o e

H Videos * Name

] PhysicianBannerView.xaml.cs
e Gehys

X Computer

& Local Disk (C:)

& SD_DRIVE (D)

s Local Disk (F)

3% documents (Winfragistics1\igfl|
£ jasonb (infragistics1\igfiles\de
£ backups (WinfragisticsL\igfiles\|

a

Date modified Type

5/15/20091.04 AM Visua|

Visual C# Files ("cs;"res"setti .

Add[v] [Concel |

image9.png
‘Add New Item - Patie

Templates:
Visual Studio nstalled templates -
{2 Database Unit Test [About Box
(% ADO.NET Entity Dats Model) Application Configuration File
[2] Application Manifest File) Assembly Information File
@ Bitmap File) Class
2 Class Diagram) Code File
8] Component Class [R] Cursor File
& Custom Control - Custom Control (WPF)
EiDataset Debugger Visualzer
5 Dynamic Data Field 2 Flow Document (WPF)
[s] HTML Page Lcon File
@) nstaller Class Interface
[LINQto SQL Classes
Local Database Cache I

image10.png
Ele Edit View Project Build Debug Date Tools Test Anayze Window Help

-5 @ % B[00~ -E- 5] b Debug - AnyCPU - | @ appid

MR e RN =R

[SPE 083 838BRQ
5| Ordersviewscami] ~ x [Solition Explorer - Solution Patientbxplorer . « & X
g = BlaE|
S |- (5] Solution PatientExplorer (1 project)
= 5) Patientbxplorer
w 4 Properties
S
A
(5] EDPatientsListiew.xami
5 OrdersView.xami
5] PhysicianBannerView.xami
ViewModel
i 3 app.config
[1GDesign "t “@xamL | — ngs 5] Appami
= <UserControl x:Class="PatientExplorer.View.OrdersView" =
xmins="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmins:x="http://schemas.microsoft.com/winfx/2006/xaml" L
Height="300" Width="300"> 1
<Grid>
</Grid>
</UserControl>
< i o
[E Grid UserControl/Grid | (& Solution Explorer [Properties [Class View
| Evror List] =1 Output]
Ln6 Col9 h13 s

Ready

image11.png
iﬂulﬂnm CRM Patient Expl

Admit Date:

wPL: Ml Alergies:
DOB: Diagnosis: Diagnosis

image12.png
Diagnosis: Diagnosis

Test Results

Diagnosis Support

image13.png
Admit Date: 6/25/200912:00:00 AM

Wergies: 2 Latex, Penicilin
DOB: 1/20/19641200:00 AM Diagnosis: Diagnosis

ED Patient List Test Results

Complaints Sev | Patient
Severehesdache | High Rizzolohn
Chest Pain Mediur RizzoJohn
Fever Sore Throst High RizzoJohn
SurredSpeech Mediur Rizzolohn
Dizziness Hgh Rizzoon
Shortness of Bresth Low Jeldree Duncan

Prozsc
Buspiron
Depatots
Lopresso

Disudid Diagnosis Support

Rl ——

image1.png
NEt Framework

image2.png
wering The Presentalion

